

Codes and Ciphers	UNIT $10 \begin{aligned} & \text { Public Key } \\ & \text { Cryptography }\end{aligned} \quad$ Lesson Plan 1	Coding and Decoding
Activity 1 (continued)	Message D O O R Number value 2 6 6 7 T: Now we take each number to the power of $E(=3)$. P (on board): $\begin{array}{cccc} 2^{3} & 6^{3} & 6^{3} & 7^{3} \\ 8 & 216 & 216 & 343 \end{array}$ T: Now work out the remainder on division by 10 . That's easy! P (on board): $\begin{array}{lll}8 & 6 & 6\end{array}$ T: So the coded message is 8663 . T: We use a similar method to decode. You take each of the numbers to the power of $D(=7)$. $\begin{array}{lcccc}\text { P (on board): } & 8^{7} & 6^{7} & 6^{7} & 3^{7} \\ & 2097152 & 279936 & 279936 & 2187\end{array}$ T: As before, we take the remainder on division by $m(=10)$. P (on board): D O O R T : Well done!	Notes P at board, completes the first two lines of the table, with advice from class, if necessary. It might be useful for Ps to each have a copy of OS $\mathbf{1 0 . 2}$ and quickly copy information from board. Other Ps help with the calculations and agree/disagree with what is written on board.
2	Practice Exercise 1, part b).	Ps work in pairs with T monitoring and helping. Ps have about 8 minutes for this before T interrupts and work is reviewed interactively.
(continued)	Security T : Why is our illustration not realistic? (E and m are so small that m, p, q, etc. could easily be deduced) T: Yes, in practice, p and q are very large so that it would be almost impossible to factor m. Of course, the process of deciphering and enciphering could be computerised. T: Can you find any other obvious flaws in the process? (Letters repeated will have identical codes) T: How could you overcome this? T: One way is to work using pairs. So for DOOR, we have What is the problem here? (You need the m value to be larger than 99)	This part might need more clarification; remember that the number of possible numbers has to be less than m for the method to work.

Codes and Ciphers	$\text { UNIT } 10 \begin{aligned} & \text { Public Key } \\ & \text { Cryptography } \end{aligned} \text { Lesson Plan } 1$	Coding and Decoding
Activity 3 (continued)	T: Yes; so here is a new choice of parameters: $m=115, \quad E=83, \quad D=35$ T: What are p and q ? (5 and 23) T: A ? $(A=4 \times 22=88)$ T: Is $D \times E-1$ a multiple of A ? $\text { (Yes: } \quad D \times E-1=2904=33 A)$ T: So this code will work. But what will cause problems? (Calculating $26^{83} \bmod 115$)	Notes T puts these on board. Depending on the class, T can ask Ps to investigate methods of calculating these modulo sums, or can ask Ps to design their own cipher code.
	Homework Design a simple RSA code and check that it works.	

